Doing the Obvious:

Linearizing

Straight Lines are Easy to Interpret

Howard (Cork) Hayden, Prof. Emeritus of Physics, UConn At home in Pueblo West, CO Editor & Publisher, *The Energy Advocate* www.energyadvocate.com

Third Santa Fe Conference on Global and Regional Climate Change, 30 Oct-4 Nov 2011

Cut to the Chase

- (Differential) CO₂ forcing is (IPCC *TAR*) $\Delta F = 5.35 \ln \left(\frac{C}{C_0}\right) \frac{W}{m^2}$
- Temperature rise (first order): $\Delta T = \lambda \Delta F$

$$\therefore \quad \Delta T = \gamma \ln \left(\frac{C}{C_0}\right) \quad \gamma \text{ unknown}$$

• ... a direct proportion. PLOT THE DATA!

What to Plot?

- Plot ΔT versus $\ln(C/C_0)$ to determine
 - Whether the plot is linear
 - Whether there is a direct proportion
 - The slope γ if the line is straight
 - The sensitivity to CO_2 doubling, $\Delta T_{doub} = \gamma \ln(2)$
- Standard operating procedure in all fields of science:
 - Plot effect versus cause.
 - Example: Dose-Response curves

Boltzmann Factors

BUT WAIT! THERE'S MORE!

Howard (Cork) Hayden, *The Energy Advocate* corkhayden@comcast.net

CO₂: Affinity for Water (?)

• If so, affinity corresponds to some "binding energy" (for lack of a better word) ε

$$\frac{C_{\text{atm}}}{C_{\text{water}}} = \exp\left(\frac{-\varepsilon}{kT}\right)$$

- NB: If there is no affinity, then $\mathcal{E} = 0$
- But if $\mathcal{E} = 0$, then Henry's Law and van't Hoff's equation are out the window.

And if the temperature changes?

• Temperature rises from T_0 to T:

$$\left(\frac{C}{C_0}\right)_{\text{atm}} = \exp\left\{-\frac{\varepsilon}{k}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right\} \text{ if } C_{\text{water}} \approx \text{ const}$$

or

$$\left(\frac{C}{C_0}\right)_{\text{atm}} = \exp\left\{+\frac{\varepsilon}{k}\left(\frac{\Delta T}{TT_0}\right)\right\}$$

Howard (Cork) Hayden, *The Energy Advocate* corkhayden@comcast.net

Simplifying ...

• T and T_0 are both about 300 K; $\Delta T \approx 1$ K

Howard (Cork) Hayden, The Energy Advocate corkhayden@comcast.net

What to graph?

- We have yet another reason to plot ΔT versus $\ln(C/C_0)$
- It's a little harder to dope out which is cause and which is effect, because two entirely different phenomena lead to the same *form* of equation
- We should *expect* to find a direct proportion.
- How to interpret slope?

Learning From Noise

- What Would Noise Be Like if ...
 - You plotted Atmospheric Pressure (effect) at Times Square versus water flow in the Rio Grande (putative cause)?
 - All noise, no trend
 - You plotted Quantity of O₂ consumed (effect) versus Quantity of CH₄ consumed (cause) in combustion experiments?
 - No noise, all trend
 - You plotted Earth's temperature rise (effect) versus increase in solar flux (*partial* cause)?
 - A trend & some noise. Have a look.

Solar in Cause-Effect Graph

What do you expect for the Shape and the Noise?

- Plot ΔT versus $\ln(C/C_0)$ using *data* (as opposed to computer output)
 - Shape:
 - Hockey stick? Direct Proportion? Asymptotic curve? Parabolic rise? No discernible shape?
 - Noise
 - Little noise $(R^2 > 0.8)$?
 - Considerable noise ($0.3 < R^2 < .7$)?
 - Very high noise ($R^2 < 0.2$)?

Data Sources for Atm. Temp & CO₂

- #1 December 1978 to present:
 - Temperature anomaly measured by satellite
 - Mauna Loa measurements of CO₂
- # 2 (130-year span)
 - NASA-GISS temperature from http://data.giss.nasa.gov/gistemp/tabledata/G LB.Ts+dSST.txt
 - NASA-GISS CO₂ concentration from http://data.giss.nasa.gov/modelforce/ghgases/ Fig1A.ext.txt

Data set #1 Satellite data since 1979

Howard (Cork) Hayden, *The Energy Advocate* corkhayden@comcast.net

Data set #2 NASA data, 1880-present

Global SST Data from AR4

In (CO₂ ratio) vs Δ SST (1910-2005)

"Sensitivity" from Real Data

- Sensitivity = $\gamma^* \ln(2)$
- = 2.0 °C providing that Henry's Law doesn't apply
- That is, we assume incorrectly that warming water does not emit CO₂
- Therefore, 2.0 °C is an upper limit to the sensitivity

Slope = α = 2.884 °C $\alpha \ln(2) = 2.0 \ ^{\circ}\text{C}$ on Between Temp. Anomaly Correla & In (CO₂ ratio) 1 femperature Anomaly w.r.t 1880 $\Delta T = 2.884 \ln(CO_2 \text{ ratio}) - 0.0362$ $R^2 = 0.8102$ 0.8 0.6 0.4 0.2 -0.2 0 0.05 0.1 0.15 0.2 0.25 0.3 Natural log of CO₂ ratio, ref. to 1880

Wait! We Forgot the Sun!

- Solar flux (outside the atmosphere) has increased by about 4 Wm⁻² since 1880
- Equivalent to "forcing" of $1 \text{ Wm}^{-2} * (1 - albedo) = 0.7 \text{ Wm}^{-2}$
- We need to correct the cause-effect graph for that (continuously variable) amount

Sensitivity < 1.66 °C

